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 Introduction  

1.1 Outline and Framework of this Deliverable 

This deliverable is a report of the work done in the framework of the Umbrella project in task 

2.4 and 2.5 of Work Package 2 as defined in the description of work (DOW) of the Umbrella 

project [1]. The individual titles of the tasks according to the DOW [ [1], p. 8] are: 

1. Deriving forecast distributions for the system state, 
2. Forecast of Critical System States. 

In the DOW [ [1], p. 9] the contents of the Deliverable 2.2 are outlined as follows: 

Report on methods for system state forecasting: Report on methods for system state 

forecasting including uncertainties and critical system states. 

The deliverable at hand is structured as follows. The second section of chapter 0 provides 

some background information on the UMBRELLA project and motivates this deliverable. 

Chapter 2 defines system states and system state parameters and compares the current 

operational planning framework with a probabilistic one developed within the UMBRELLA 

project. The modelling of relevant uncertainties for operational planning, which is elaborated 

in the Deliverable 2.1 [2], is briefly recalled in chapter 3 due to its importance for system 

state modelling. Chapter 4 describes how the simulated uncertainties are merged in order 

to run load flow calculation and compute system state parameter distributions. The influence 

of the disregarded uncertainties is also discussed in chapter 4. Finally, the identification and 

forecasting of critical system states is described in chapter 5. Chapter 6 concludes.   

This deliverable was compiled under the lead of the University of Duisburg-Essen. Further 

participants were the Forschungsgemeinschaft für elektrische Anlagen und Stromwirtschaft 

e.V. (FGH). 

1.2 Background  

The energy landscape of Europe has been altered heavily in recent years. Besides the 

liberalization of the electricity market, the climate policy of the European Union (EU) that 

also defines targets for the electricity generation by renewable energy sources (RES) has 

important implications for the operation of the European transmission system. Uncertainties 

on the demand side, namely load forecasting uncertainties, are well-known and under 

control for years in terms of forecasting accuracy. On the supply side, the uncertainty of 

power plant outages was the major concern transmission system operators (TSOs) had to 

face for many years. Nowadays, we witness a strong shift in the power system due to 

growing energy generation from RES. This has not only consequences on the supply side, 

but also on the demand side, because many wind and solar farms feed into subordinate 

grids, which is not directly observable by the TSOs. Especially the intermittent nature of wind 

requires methods to anticipate changes of wind and, thus, wind power production. However, 
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no forecast is perfect. In order to cope with the forecast error, it is necessary to know the 

possible magnitude of under- or overestimations and its probabilities, so that TSOs are 

enabled to identify potential risks for a secure operation of their respective control area early 

and start the necessary actions to prevent such system states. This is one of the major 

objectives of Work Package 2.  

Besides the forecast error, the increasing amount of RES also has an impact on intraday 

trades and, hence, on the secure operation of the grid. If the energy output of wind or solar 

power farms deviates from the expected output, conventional power plants have to adjust 

their power output accordingly. In as far as the decision of changing the power plant output 

is driven by purely commercial factors, the adjustment of the conventional power plants 

might jeopardize the system security even more. To predict the mentioned adjustments and 

the resulting changes of power flows as well as their uncertainty is also a major contribution 

of Work Package 2. 

Most of the mentioned processes are more or less easy to predict individually. However, 

TSOs have limited information on the detail of these processes, but can only observe an 

aggregation of them (vertical grid load). This makes the collection of data and its use more 

difficult. Figure 1-1 illustrates this situation graphically. 

Having analyzed all the main uncertainties and being able to forecast them would lead to an 

amount of data and information that is hard to handle for TSOs. Thus, the uncertainties and 

especially the correlation between uncertainties at different sites in the grid have to be 

translated into a standard that provides meaningful and quick decision guidance for TSOs. 

How to achieve a descriptive overall system state description is also part of the deliverable 

at hand. Furthermore, it is described how the critical system states among all possible 

system states are identified and how they can be forecasted. 

 

Figure 1-1: Obervable and non-observable influence factors 
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 System states in operational planning 

One of the main objectives of the operational planning process carried out by TSOs is the 

forecasting of future system states. The forecasts are obtained by predicting factors which 

influence the system state significantly. System states are described quantitatively by 

system state parameters, which are directly influenced by one or several factors. The 

concept is depicted in fFigure 2-1. 

 

 

Figure 2-1: Interdependency between system state, system paramteres and factors 

The system state can be described by the system state parameters A to n. System state 

parameter A is determined by the two factors 1 and 2, whereas system state parameter B 

is influenced by three factors etc.  

Subsequently, section 0 carries out a definition of system state parameters. In order to build 

a common foundation and, once again, motivate this research work, section 2.2 explains 

quickly the current operational planning framework. Section 2.3 elaborates how the 

operational planning process within the UMBRELLA project, which is capable of integrating 

uncertainties, is designed. 

2.1 Definition of system state parameters 

The transmission system is in a certain quasi-stationary state at any point in time. A system 

state relevant for the operational planning process can be described by system state 

parameters. For operational planning purposes, the choice of system state parameters 

should be influenced by the relevance of the respective parameter, the parameterôs 

information value and the time necessary to process given information. Given that, the 

system parameters: 

¶ Node voltages and 

¶ Branch currents 

are chosen for the purpose of operational planning. 

System State

System State 
Parameter A

System State 
Parameter B

System State 
Parameters n

Factor 1 Factor 2 Factor 4 Factor mFactor 3 Factor 5
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The transmission system is usually visualized as a graph model with nodes connected by 

edges/branches. A simple example of a system represented by a node-branch model with 

three nodes and branches is given in Figure 2-2. 

 

Figure 2-2: Exemplary node-branch model  

The state of the system in Figure 2-2 is described by the three node voltages UA, UB and UC 

and the branch currents IAŸB, IAŸC and ICŸB. A forecast of future system states requires a 

prediction of all relevant factors determining the system state parameters (cf. Figure 2-1).  

How these system state parameters and their factors are computed by the members of the 

ñEuropean Network of Transmission System Operators for Electricityò (entso-e) according 

to the current Continental Europe Operation Handbook [3] is explained subsequently. How 

they can be derived considering uncertainties in the operational planning process and how 

they can be forecasted is the main subject of the deliverable at hand. 

2.2  Current operational planning framework 

The current day-ahead congestion forecast (DACF) procedure executed by members of 

entso-e is shown in Figure 2-3 in a simplified way for the TSO A. One of the purposes of the 

DACF procedure is to identify potential congestions and contingencies by forecasting the 

quasi-stationary system state one day in advance. The basis for a determination of system 

state parameters is the deterministic prediction of uncertain factors influencing the system 

state parameters node voltages and branch currents. The most relevant factors are loads 

and in-feeds at each grid node. These two factors determine the use of the system 

represented by the box on the upper right hand side of Figure 2-3. The topology of the 

network, depicted at the upper left hand side of the figure also has a significant impact on 

the system state. Lastly, the power exchange with neighboring interconnected control areas 

is relevant for the determination of the system state as well. This factor is covered by the 

box in the upper middle of Figure 2-3 labeled with ñControl Program of TSO Aò. The forecast 

of power exchanges is basically derived from the registered and scheduled trades for the 

next day.  

UA UB

UC

I!ᴼ"

I#ᴼ"I!ᴼ#
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Figure 2-3: Scheme of DACF procedure of TSO A according to [3] 

Based on the expected network topology, the power exchanges and the use of the system, 

system states for all 24 hours of the next day are determined separately by running load-

flow calculations. Subsequently, TSO A adjusts the model of the system by e.g. applying 

topology measures.  

In order to get a complete DACF for the entire entso-e region, the data sets of all participating 

TSOs have to be merged including a preceding adjustment of control programs using the 

VULCANUS system [3]. 

2.3 Operational planning framework accounting for uncertainties 

Naturally, the current DACF procedure based on deterministic forecasts does not allow for 

any consideration of uncertainties. Presently, the system use case (SUC) is derived by 

aggregating all load and in-feeds at all nodes of the network.  The result is the balance for 

every node, which is shown in Figure 2-4. 
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Figure 2-4: Aggregation of loads and in-feeds at an exemplary transmission node 

However, certain factors such as wind power forecasts are subject to uncertainty. The main 

concept of this deliverable is to describe a methodology that facilitates the incorporation of 

probabilistic forecasts in the operational planning process based on the current DACF 

approach. The result is a set of forecasts representing deviations from the deterministic 

DACF and their probabilities. This can be interpreted as an extension of the DACF process 

with additional input factors. The resulting structure is defined as DACF+ dataset in the 

course of this document. In order to incorporate the uncertainties of different types of in-

feeds and load into the DACF+, they have to be considered separately for the SUCs. This 

is depicted in Figure 2-5. 

 

Figure 2-5: Seperate consideration of different factors determining SUCs 

While considering uncertainty factors and their occurrence, the interaction between 

uncertainty factors has to be regarded as well. As can be seen in Figure 2-6, the uncertainty 

of RES in-feeds and load can influence the control program. As an example, more wind in-

feeds than expected in one control zone might lead to an increase of exports into 

neighbouring control zones. Additionally, unexpected changes on the load side and the 

control program will inescapably cause trades in the intraday markets, which changes the 

original production schedules. Which uncertainty factors are considered exactly and how 

they can be modelled is explained in chapter 3. How these uncertainties are used to compute 

system state parameters and their distributions is elaborated in chapter 4. Chapter 5 focuses 

on the forecast of critical system states. 
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Figure 2-6: Probabilistic operational planning framework 
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 Modelling of relevant uncertainties for operational 
planning of transmission systems 

Relevant uncertainties for operational planning of transmission grids can be classified into 

directly observable and unobservable uncertainty factors (see Figure 1-1). In this 

deliverable, an uncertainty factor is observable if its value can be metered and, hence, is 

known to the TSO for the past. This includes the infeed from power plants which are directly 

connected to the transmission grid (ὖ ȟ) and the vertical grid load (ὖ ȟ) at each grid 

node Ὥ. Unobservable factors cannot be metered by the TSOs directly, but a superposition 

of several unobservable factors can: ὖ ȟ is normally composed of unobservable factors 

such as renewable power infeed or load. Additionally, the problem of non-observability is 

critical for TSOs because certain unobservable factors influence observable factors through 

market activities. In order to cope with this issue, unobservable factors have to be made 

observable by generating additional data, so that they can be recomposed to observable 

factors. In the transmission grid, this concerns in particular the vertical grid load, which is at 

each grid node Ὥ defined as: 

ὖ ȟ ὖ ȟ ὖ ȟ ὖ ȟ ȟȟ 

where ὖ ȟ is load from households, industry etc., ὖ ȟ is the underlying generation from 

RES and ὖ ȟ ȟ is the underlying generation from conventional power plants. 

Furthermore, changes of factors within a control zone influence factors and their uncertainty 

in neighbouring control zones and beyond. This is modelled in this deliverable as the power 

exchange ὖ  between control zones. 

In general, the modelling of uncertainty factors can be divided into estimation and simulation. 

The estimation is based upon historical observations and is repeated occasionally in order 

to account for changing uncertainties over time. Simulation is repeated daily for operational 

planning. 

Subsequently, the modelling of the individual uncertainty factors is described briefly. Further 

information can be found in [2]. 

3.1 Renewable power forecasts 

Renewable power forecasts include underlying wind or solar power or both depending on 

the installed capacity in the control zone. The subsequent modelling approach requires 

historical RES in-feeds and forecasts at each grid node. If this kind of data is not available 

already, it has to be generated by the TSO. How the modelling of RES uncertainties fits into 

the probabilistic operational planning framework is illustrated in Figure 3-1. 
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Figure 3-1: RES uncertainty in the probabilistic operational planning framework 

As mentioned earlier, the entire process can be divided into estimation and simulation. Its 

structure is shown in Figure 3-2. The individual parts are elaborated subsequently. 

 

Figure 3-2: Estimation and simulation of RES uncertainties 

3.1.1 Estimation 

ὖ ȟ is subject to uncertainty due to imperfect deterministic forecasts ὖ ȟ. Hence, a 

forecast error Ὁ ȟ  ὖ ȟ ὖ ȟ is made at each grid node Ὥ. In order to model the 

uncertainty of renewable power in-feeds, the probability distribution Ὂ ȟὖ ȟ  has to be 

known. At each grid node, Ὁ ȟ and ὖ ȟ are normalized with the installed capacity at Ὥ, 

so that Ὁ ȟᶰ ρȟρ and ὖ ȟᶰπȟρ. Thus, ὖ ȟ π leads to Ὁ ȟᶰ ρȟπ and ὖ ȟ

ρ to Ὁ ȟᶰπȟρ. In order to account for this property, the conditional distribution 
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Ὂ ȟὖ ȟȿὖ ȟ  has to be estimated. Furthermore, the issue time ὸ and the look-ahead 

time Ὧ (forecast time horizon) of the forecast influence the uncertainty of the deterministic 

forecast, so that the conditional probability density function becomes Ὂ ȟ
ȿ
ὖ ȟ

ȿ
ȿὖ ȟ

ȿ
. 

Given that TSOs receive their forecasts at the same time each day and that an update is 

not possible because measures of operational planning have to be fixed day-ahead, ὸ can 

be neglected for the estimation. Finally, Ὂ ȟὖ ȟȿὖ ȟ  should be estimated to model 

the uncertainty of RES forecasts adequately for operational planning. Hence, if the number 

of grid nodes in a control zone is Ὅ and ὑ hours are considered for operational planning, Ὅẗ

ὑ distributions have to be estimated. Depending on the type of relevant underlying 

generation from RESs, Ὂ ȟ, Ὂ ȟ or both are modelled.  

Practically, Ὂ ȟὖ ȟȿὖ ȟ  is not estimated directly but Ὂ ȟὉ ȟȿὖ ȟ  and 

Ὂ ȟ ή ȟȿὖ ȟ  is added later to ὖ ȟ in the simulation process.  Ὂ ȟὉ ȟȿὖ ȟ  

is estimated with a conditional kernel density estimator. 

Due to the inertia of meteorological developments, which are normally a main input of RES 

power forecasts, forecasts are spatially correlated. This motivates the use of a copula, which 

describes the functional relationship between a joint distribution function and its marginals. 

With Ὗ ȟ Ὂ ȟ ὖ ȟὖ ȟ :  

ὅ ȟ Ὗ ȟ ȟὟ ȟȟȣȟὟ ȟ Ὂ ὖ ȟȟὖ ȟȟȣȟὖ ȟȟ”ȟ 

where ” is the copula parameter(s) of a Gaussian or t-copula. Which copula is suitable is 

tested with a state-of-the-art copula test [4]. 

Further information about the estimation of the marginal distributions and copulas can be 

found in [2]. 

3.1.2 Simulation 

The simulation requires the copula ὅ ȟ as input and the point prediction ὖ ȟ
ȿ

. By drawing 

random numbers with ὅ ȟ, ὖ ȟ
ȿ

 can be simulated for each grid node Ὥ whereas the 

spatial correlation is accounted for by the copula. The simulations is carried out by following: 

ὅ ȟ Ὗ ȟ ȟὟ ȟȟȣȟὟ ȟ ᵼὟ ȟ ȟὟ ȟȟȣȟὟ ȟᵼὊ ȟ
ȿ

Ὗ ȟ
ȿ
ὖ ȟ

ȿ

ᵼὖ ȟ ȟ
ȿ
Ȣ 

This yields the simulated underlying infeed from RES at each grid node Ὥ for the time stamp 

ὸ. 
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3.2 Active load forecasts 

 

Figure 3-3: Load uncertainty in the probabilistic operational planning framework 

Active load plays a special role in this framework. According to the definition made in the 

beginning of section 3, load uncertainty absorbs the remaining uncertainty that is not caused 

by RES uncertainty, namely load from households, industry etc. and underlying conventional 

generation, and can be defined as:  

ὖ ȟ ὖ ȟ ὖ ȟ ὖ ȟ ȟȢ 

If the TSO decides not to model RES individually (e.g. because of a negligible amount of 

RES installations), the uncertainty of ὖ ȟ includes the remaining RES uncertainty as well. 

If there is no underlying conventional generation and the RES uncertainty is modelled as in 

section 3.1, the uncertainty of ὖ ȟ contains only load from households, factories etc. The 

latter has been a daily forecasting routine for TSOs for decades. That is why, the uncertainty 

of ὖ ȟ is lower compared to RES uncertainty and not a major concern for operational 

planning. Still, an integral approach requires the modelling of load uncertainty as well. 

3.2.1 Estimation 

Load uncertainty data (DACFS and SNs provided by TSO partners) exhibits quite different 

patterns depending on the structure of the underlying load and small-scale generation. Thus, 

a parametric approach for modelling the uncertainty of ὖ ȟ is not an option. Instead, a 

non-parametric approach is chosen. A kernel density estimator with a Gaussian kernel 

performs well and is flexible enough to deal with any kind of load distribution. 

Depending on the load structure, load forecast errors can be highly correlated at a given 

look-ahead time and, hence, the forecast uncertainty. A copula accounts for this spatial 
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interdependence. Therefore, Ὂ ȟὖ ȟ  is estimated with a kernel density estimator and 

transformed to Ὗ ȟ using the normal quantile transform, so that a copula can be fitted: 

ὅ ȟ Ὗ ȟ ȟὟ ȟȟȣȟὟ ȟ Ὂ ὖ ȟȟὖ ȟȟȣȟὖ ȟȟ”ȟ 

where ” is the copula parameter(s) of a Gaussian or t-copula. 

3.2.2 Simulation 

In contrast to the simulation of RES uncertainty, load uncertainty simulation does not require 

point forecasts, because the distributions are not conditional on them. Instead, ὅ ȟ can 

be directly used to simulate the load uncertainty at each grid node for each look-ahead time 

Ὧ by following: 

ὅ ȟ Ὗ ȟ ȟὟ ȟȟȣȟὟ ȟ ᵼὟ ȟ ȟὟ ȟȟȣȟὟ ȟᵼὊ ȟ
ȿ

Ὗ ȟ
ȿ

ᵼὖ ȟ ȟ
ȿ
Ȣ 

3.3 Reactive load forecasts 

The current DACF dataset includes not only forecasts of the vertical active load, but also 

information on reactive power in an analogous manner. However, according to information 

provided by TSOs this data is not used for simulations or analyses during the operational 

planning process. One reason to neglect the data is the limited quality. Furthermore, due to 

the absence of a common methodology to obtain reactive load forecasts applied by all 

European TSOs, the accuracy of the forecasts differs significantly. The accuracy has been 

evaluated by comparing historical DACF datasets with the corresponding snapshots.  

In order to build a usable and complete sytem use case for operational planning, the DACF+ 

requires a forecast methodology for reactive power 1 ȟ
ȿ

 at each node  Ὥ, which is: 

¶ valid for all European TSOs, 

¶ provides an adequate accuracy, 

¶ capable of considering changes in the system. 

This also enables TSOs to perform static voltage stability analyses. 

To add to the complexity of the reactive load forecast 1 , its uncertainty Ὂ ȟὗ ȟ  

is higher compared to the active power forecast due to several direct interpedendences, 

such as: 

¶ existing system components such as overhead-lines and cables, 

¶ the topology of the transmission system, and 

¶ the active and reactive loads in subordinate grids. 

In the past, the forecast of the reactive power was comparably simple and straight-forward. 

Due to the lower amount of distributed generation, TSOs were able to forecast the active 

load based on standardized load profiles. Based on those porfiles, the reactive load was 
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calculated assuming either a constant power factor or, if a more accurate forecast was 

required, standardized power factor profiles or aggregated reactive power profiles as 

described in [5]. These methods are not accurate enough in a power system with a high 

penetration of RES, due to the influence of the RES caused by. 

¶ the active power infeed from RES units connected to sub-transmission voltage 

levels, that influenced load flows in subordinate grids and, hence, the reactive power, 

and 

¶ the reactive power injected from RES, especially wind farms. 

These are effects which cannot be modelled by the previously described methods to forecast 

reactive loads and motivate the development of a new forecasting tool. Given the 

dependencies that influence 1 ȟ and Ὂ ȟὗ ȟ  and the low quality of the reactive 

load forecast, it is necessary to generate a deterministic and probabilistic reactive load 

forecast.  

3.3.1 Estimation 

As mentioned earlier, 1 ȟ
ȿ

 depends directly on other influencing factors, which are already 

modelled within this framework, namely: 

¶ Forecasted wind power infeed at node Ὥ, 

¶ Forecasted solar power infeed at node Ὥ, and 

¶ Forecasted active power at node Ὥ. 

Besides, the day-ahead value 1 ȟ
ȿ

 is used to account for autocorrelation and the 

hour of the day and type of the day is incorporated to capture seasonal and diurnal patterns. 

Hence, the point forecast 1 ȟ
ȿ

 can be expressed as function of its influencing parameters: 

1
ȿ
Ὢ1 ȟ

ȿ
ȟὖ ȟ

ȿ
ȟὖ ȟ

ȿ
ȟὬέὨȟὸέὨȟ 

where ὬέὨ represents the hour of the day and ὸέὨ the type of the day (weekday, weekend 

or holiday). 

Due to the mentioned complexities and non-linear relationships between the influencing 

factors, traditional time series methods cannot be applied. Instead, artificial neuronal 

networks (ANNs) are used to predict 1 ȟ
ȿ

. Figure 3-4 shows the structure of the ANN. 

Cross validation is applied during training to avoid over-fitting of the ANN. 80% of the data 
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is used to train the ANN and 20% is used for the validation, whereas the data is split 

randomly. 

Trained 

ANN

Hour

Type of Day

Wind Forecast

PLoad Forecast

PV Forecast

Q Forecast

Qt-24h

 

Figure 3-4: Scheme of ANN 

Besides the nodes with a high underlying share of renewebale energies, other particular 

nodes, such as pump storage nodes, have a non-standard PQ profile. However, this can be 

handeled properly by ANNs as well. Appendix A shows and analyzes some typical PQ 

profiles. 

3.3.2 Simulation 

The estimated relationships can be used to determine directly the reactive load: 

1 ȟ
ȿ

Ὢ1 ȟ
ȿ
ȟ0 ȟ Ȣ

ȿ
0 ȟ Ȣ

ȿ
ȟὬέὨȟὸέὨȟ 

whereas simulation results for 0 ȟ Ȣ
ȿ

 and 0 ȟ Ȣ
ȿ

 are used. Hence, the deterministic 

estimator can be applied to model the uncertainty of reactive load by taking uncertainty 

simulations as an input. How this is incorporated into the DACF+ process is elaborated in 

appendix A. In addition, appendix a contains exemplary results of the reactive load forecast 

model. 
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3.4 Power exchange with neighbouring systems/control areas 

 

Figure 5: Power exchange uncertainty in the probabilistic operational planning framework 

A forecast of future system states requires predictions on those parameters which influence 

the system state. The approach for power generation by RES and loads are described in 

the previous sections of this document. However, the exchange with neighboring parts of 

the European Transmission System has an influence on the system state. Thus, it has to be 

considered as well and is addressed subsequently. How this is incpororated into the 

probabilistic operational planning framework is depicted in Figure 5. 

The ñEuropean Network of Transmission System Operators for Electricityò (entso-e) 

publishes a day-ahead forecast for the power exchange between those control areas being 

members of entso-e. The sum of all exchanges with neighbors produces the balance of the 

respective control area. However, since this forecast is generated one day in advance it 

does not include e.g. the results of intraday trading activities. Given the fact that the volume 

of electrical energy traded in this market is significant, the deviation between the day-ahead 

forecast and the actual values is important for a realistic assessment of future system states. 

Furthermore, it can be assumed that the exchange of electrical power between control areas 

will further increase in the future due to the effort made by the European Union to implement 

one common European market for electrical energy.  

The forecast of the control area balance acts as an input parameter for the intraday-day 

module which is part of the approach presented in this document. Therefore, the error of the 

day-ahead exchange forecast (DAEF) compared to the actual power flow (APF) has to be 

modelled. The approach for the European control areas balancing model (ECAB) is 

presented and discussed in the following sections. 

Starting with the background for the modelling of the power exchange between European 

control areas, the objective of the model is described in the next section of this chapter. After 

that, the specification of the model and the approach which is chosen to predict the forecast 
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error and the control area balances, respectively, is presented and discussed. The proof of 

concept is carried out based on exemplary results for different years in the past and various 

control areas. 

3.4.1 Estimation 

3.4.1.1 Background 

The DAEF as well as the APF is available on the entso-e transparency platform [source: 

https://transparency.entsoe.eu]. The deviation between these two parameters is depicted 

for a timespan of three days and the control area Slovenia in Figure 3-6. 

 

Figure 3-6: Deviation between DAEF and APF (Slovenia) 

The balance of the control area Slovenia is shown on the y-axis whereas the timespan 

considered can be found on the x-axis. A negative balance of the control area means that 

electrical energy is imported whilst a positive balance is the result of an export of electrical 

energy from this control area.  

The balance forecasted the day before for Slovenia leads to an import of electrical energy 

for almost the entire timespan analysed here in this example. However, the sum of the APFs 

leads to a significant number of hours with a net export of electrical energy. Furthermore, 

the sum of the APFs does not exceed +/- 500 MW, but the forecast predicted a maximum 

difference of more than -1000 MW. 

3.4.1.2 Objective 

The objective here is the development of a model which is capable of predicting the error of 

the day-ahead forecast of power exchanges between control areas and the resulting 

balances of these control areas. In order to achieve this objective, constraints have to be 

considered.  
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The first constraint is the availability and quality of data available. The data provided by the 

entso-e transparency platform (see previous section) does include a limited number of 

control areas in Europe only.  

The second constraint is the fact that the sum of the balances of all control areas has to be 

zero. Based on the data provided by entso-e the second constraint is only valid for a 

selection of European control areas. Therefore, the ECAB can be used for the following 

selection of control areas/countries: 

¶ Great Britain 

¶ Spain 

¶ France 

¶ Belgium 

¶ The Netherlands 

¶ Sweden 3 + 4 

¶ Norway 1 + 2 

¶ Denmark 1 + 2 

¶ Germany (considered as one control area) 

¶ Switzerland 

¶ Austria 

¶ Italy 

¶ Poland 

¶ Czech Republic 

¶ Slovakia 

¶ Slovenia 

¶ Hungary 

The selection is depicted in Figure 3-7. 
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Figure 3-7: Selected countries/control areas for ECAB model 

The sum of all balances within the colored area is zero for every hour. This is not valid for 

the inclusion of additional countries. 

3.4.1.3 Specification of the model 

In addition to the objective and the constraints to be considered additional factors influence 

the development of the model. First of all, it is aspired to use a limited set of input data to 

run the model and to achieve the desired results. Furthermore, the input dataset should be 

publicly available. Secondly, the usability of the model has a high priority since the model 

serves ñonlyò as a tool to gather the necessary information for the prediction and 

identification of critical system states. Therefore, the computation must stay within a 

timespan which allows an application in the operational planning process executed by TSOs. 

Lastly, a modular approach is preferred in order to ensure the expandability of the model. 

For instance, if additional information will be available in the near future it should be possible 

to include this information to improve the quality of the model output. 
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3.4.1.4 Approach and methodology 

The objective and the corresponding framework for the model suggest an approach based 

on statistical methods. However, due to the fact that the objective of the reactive load model 

which has been described before (see section 3.3), is a similar one, the application of an 

artificial neural network (ANN) has been tested for this purpose as well.  

The ANN is trained with data from the previous year and is capable of predicting the DAEF 

error for the next day. In order to meet the requirements for system state forecasting, a 

deterministic as well as a probabilistic set of input parameters can be used.  

The process for the deterministic use case is shown in Figure 3-8. 

 

Figure 3-8: Flow chart of the ECAB with deterministic input data 

The process consists of two parts. The part on the left hand side of Figure 3-8 has to be 

executed at least a couple of hours in advance. The training of the ANN is the core function 

of this offline part. The user has to define the year for which the ANN has to be trained. In 

general, the year to be chosen here is the year before the current one. This information is 

used to select the relevant data for the training of the ANN from the database. A total number 

of A ANNs is trained. In the current version of the model, A equals 20 based on the selection 

of countries presented in section 3.4.1.2. 

The trained ANNs serve as an input factor for the online part of the ECAB depicted on the 

right hand side of Figure 3-8. The online process of the ECAB starts with a user input. The 
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required information includes the definition of the time period for which the model should 

predict the forecast error. The time period is defined by the start and stop time (year, month, 

day and hour) and comprises x hours.  

Furthermore, the control areas/countries to be considered by the model have to be specified 

by the user.  

The next two steps of the online process will be according to the user defined time period 

executed x times. The first step is the allocation of forecast data of the infeed by RES and 

the load for the respective hour from the database. The forecast data serves as an input for 

the A trained ANNs. The results are A*x predictions of the day-ahead forecast error for the 

A control areas/countries selected by the user. 

For process for the probabilistic use case is very similar to the deterministic one described 

in Figure 3-8. Figure 3-9 below provides an overview of the probabilistic process. 

 

Figure 3-9: Flow chart of the ECAB with probabilistic input data 

The offline process is the same for both use cases. The only difference between the two 

processes lies in the online part. In contrast to the deterministic process, the input data for 

the trained ANNs consists of n samples of forecasts for the infeed by RES and the load. 

Hence, the number of predictions for the day-ahead forecast error is A * n * x. 
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3.4.1.5 Training of artificial neural networks 

Before the model can be used for the prediction of the forecast error, the artificial neural 

networks for each of the 20 control areas/countries has to be trained with historical data. In 

general, the concept is the same as for the model predicting the reactive load (see section 

3.4.1.2). For the application here, two different setups are implemented and tested. The first 

approach uses a minimum of input data whilst the second one aims to increase the forecast 

accuracy by using an extended set of input data. The scheme of the training for the reduced 

data requirements is depicted in Figure 3-10 below. 

 

Figure 3-10: Scheme of ANN training (limited input data set) 

The input vector for the ANN training contains the information on the respective hour, the 

day of the week and the day ahead forecast. The actual physical flow acts as a reference.  

The extended model using additional input data is shown in Figure 2-5. Exemplary results 

are presented in appendix B. 

 

Figure 3-11: Scheme of ANN training (extended input data set) 
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In addition to the input data used for the approach illustrated in Figure 2-4 above, the 

approach using an extended input data set includes the day ahead forecast for wind and pv-

in-feeds as well as for the load in Germany. Of course, it would be possible to include specific 

data for each country/control area considered. However, the results presented in the next 

section are already promising. Therefore, an inclusion of country-specific is part of further 

research. 

3.4.2 Simulation 

Similar to the uncertainty modelling of reactive load, the uncertainty of the power exchange 

can be modelled directy by running the ANN with input that is already available: 

ɝὖ ȟ ȟ
ȿ

Ὢ ὖ ȟ
ȟ ȿ

ȟ ὖ ȟ
ȿ
ȟ ὖ ȟ

ȿ
ȟὖ ȟ

ȿ
ȟὬέὨȟὨέύȢ 

By running the model ὔ-times a distribution of possible power exchanges can be derived.  

3.5 Short-term trading 

Unforeseen changes on the load side and of imports and exports lead inevitably to trades 

in the intraday markets. Thus, where, when and to which extend these trades take place is 

uncertain as well and affects ὖ ȟ. The integration of these uncertainties into the 

probabilistic operational planning framework can be seen in Figure 3-12. Because the 

condition Вὖ ȟ Вὖ ȟ must hold in the transmission grid as well and the 

uncertainty of ὖ  is modelled, we can focus merely on the modeling of the intraday players 

that are connected to the transmission grid. The quantity of intraday trades and their 

occurrence at ὸ Ὧ is given by: 

ɝὖ
ȿ

ɝὖ
ȟ ȿ

ɝὖ ȟ ȟ
ȿ

ὖ ȟ
ȟ ȿ

ὖ ȟ ȟ
ȟ ȿ

Ȣ 

At which node Ὥ a change of power output occurs is computed by a merit order model. 

Therefore, the merit order of all power plants connected to the transmission grid has to be 

replicated. The power plants schedules that are handed over to the TSOs by power plant 

operators one day-ahead are the main input. 
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Figure 3-12: Short-term trading uncertainty in the probabilistic operational planning framework 

In order to account for power plant outages, the probability of becoming unavailable (time to 

fail (TTF)) is modelled with an exponential distribution: 

Ὢ ὝὝὊȟ‘
ρ

‘
Ὡz ? 

If ὸ π. The distribution parameter ‘ is the mean time to fail (MTTF) in hours. By drawing 

random numbers for Ὂ ὝὝὊȟ‘ and getting the inverse distribution function, 

ὝὝὊὊ ήȟ‘ can be computed. If ὝὝὊὯ, the unit becomes unavailable at ὸ Ὧ and 

is not considered in the merit order model. 
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Figure 3-13: Merit order model 

With additional power plant specific parameters, e.g. efficiency and fuel type, the merit order 

can be replicated as shown in Figure 3-13. An evaluation of test runs has shown that the 

estimate of certain power plant specific parameters has a huge influence on the quality of 

results. E.g., if the marginal costs are not estimated well, a power plant in a completely 

different part of the control zone might adjust its power production instead the one that actual 

adjusted its power production in reality. In order to account for this additional endogenous 

uncertainty, a stochastic merit order is implemented. Thereby, the marginal costs are varied 

uniformly distributed between 95 and 105 % of the marginal cost estimate. 

Finally, ɝὖ
ȟ ȿ

 can be used to compute ɝὖ ȟ
ȿ

 based upon the merit order, what yields 

the change in power production at each node Ὥ for each time stamp ὸ Ὧ. Naturally, this 

process has to be repeated for or each simulation ίὭά. The process to determine  

ɝὖ ȟ
ȿ

 is depicted in Figure 3-14. 

ɝὖ ȟ
ȟ ȿ

 

 ὖ ȟ
ȟ ȿ

   ὖ ȟ ȟ
ȟ ȿ
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Figure 3-14: Computation of power plant production changes 

 

ɝὖ ȟ ȟ
ȟ ȿ
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 Merging of uncertainties and computation of system 
state parameter distributions 

Once all uncertainty factors are described, they have to be merged in a way that a load flow 

calculation can be run, what yields system state parameters. The procedure of merging 

uncertainties and the necessary steps are described in section 4.1. Section 4.2 discusses 

the handling of remaining uncertainties, which have not been modelled in chapter 3. Finally, 

section 4.3 focuses on the computation of system state parameter distributions. 

4.1 Simulation of uncertainties in operational planning 

In this section, the re-composition of uncertainty factors is implemented in a way that they 

can be further processed. The main application will be a load flow calculation, what requires 

vertical loads and in-feeds at each grid node and for each timestamp. 

Active vertical grid load at each node Ὥ is modelled by a combination of underlying RES 

generation (cf. section 3.1) and the remaining vertical grid load (cf. section 3.2): 

ὖ ȟ ȟ
ȟ ȿ

ὖ ȟ ȟ
ȿ

ὖ ȟ ȟ
ȿ
Ȣ 

ὗ ȟ ȟ
ȟ ȿ

 is computed according to the model presented in section 3.3. Subsequently, 

ɝὖ ȟ ȟ
ȟ ȿ

 for one control zone ᾀ and other parameters are used to model the deviation of 

the control zone balance using the ECAB model (cf. section 3.4). This yields the remainder 

of uncertainty that has to be balanced by the intraday market: 

ɝὖ ȟ ȟ
ȿ

ɝὖ ȟ ȟ
ȿ

ɝὖ ȟ
ȟ ȿ

Ȣ 

Then, the merit order model (cf. section 0) is applied to determine ὖ ȟ ȟ
ȿ

. In summary, 

the following steps have to be carried out: 

1. simulate RES and load uncertainty, 
2. run the ECAB model and 
3. run the merit order model. 

By repeating this for each look-ahead hour Ὧ and ὔ simulations, a Monte Carlo simulation 

can be performed and used as an input for multiple applications. This is exemplarily shown 

for the intraday trading part in Figure 4-1, where  ὖ ȟ ȟ
ȟ ȿ

 is available as input. 
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Figure 4-1: Intraday trading program 

4.2 System balance and operating reserves 

After all relevant uncertainty factors are modelled, merged and simulated, the condition 

ɝὖ ȟ ȟ
ȿ

ɝὖ ȟ ȟ
ȿ

 must hold for each control zone ᾀ. Hence, the remaining 

uncertainty in the system and, therefore, the system balance is theoretically zero. However, 

a few other uncertainties, which have been neglected due to their minor impact, are still 

present. Besides failures of system components, system losses will be different compared 

to the deterministic DACF. In this framework, it is assumed that the remaining uncertainties 

are handled by the operating reserves.  

ɝὖ ȟ ȟ
ȿ

 



Research Project UMBRELLA 

 

 

35 

4.3 Load flow calculation and computation of system state parameter 
distributions 

Given the uncertainties, the computation of system state parameters and their distributions 

requires to run load flow calculations. Depending on the maximum number of Monte Carlo 

simulations ὔ, the same number of load flow calculations has to be performed. The entire 

process is displayed in Figure 4-2. First, the uncertainty factors have to be simulated as 

stated in chapter 3, which is represented by the gray box. This yields the values of the 

vertical grid load ὖ ȟ ȟ
ȟ ȿ

 and infeed ὖ ȟ ȟ
ȿ

at each grid node. Subsequently, a load 

flow calculation is run and the system state parameters are computed. Thereby, the system 

state parameter voltage exists at each node, meanwhile branch current is computed for 

each line. After repeating this process ὔ-times, distributions representing all possible system 

states at time stamp ὸ Ὧ (ὸ: time of forecast issue, Ὧ: look-ahead time) are computed. 

 

Figure 4-2: Computation of system state parameter distributions 

ὖ ȟ ȟ
ȟ ȿ

 ὖ ȟ ȟ
ȿ

 



Research Project UMBRELLA 

 

 

36 

 Forecasting of critical system states 

Computing distributions of system state parameters is time-consuming, meanwhile time is 

a scarce resource in operational planning. Besides that, some computed system states are 

not critical and, hence, provide no additional information to the TSOs. By identifying the 

critical system states only and linking the forecast condition to the occurrence of critical 

system states, they can be forecasted. Therefore, section 5.1 elaborates how critical system 

states are defined. Methods for forecasting critical systems states are presented in section 

5.2. 

5.1 Definition of critical system states 

In general, a system state can be considered to be critical if an operational limit is exceeded. 

Within the nowadays regulatory framework, the N-1 criterion is the sole rule for assessing 

the reliability of a power grid. Hence, a contingency analysis applying the N-1 criterion is 

used to identify critical system states. Thereby, each simulation ίὭά requires its own 

contingency analysis. Each simulation run which leads to a violation of the N-1 criterion is 

considered to be critical. This procedure of identifying critical system states is exemplarily 

shown for the system parameter node voltage in Figure 5-1. The red dotted line represents 

the distribution of simulated voltages at a certain node. All dots (system states) which are 

inside the green interval are non-critical and, hence, are not further analyzed. 

 

 

Figure 5-1: Exemplary identification of critical system states 

Furthermore, other reliability criterion, e.g. risk-based approaches, can be implemented 

easily. In this framework, the measure of criticality is designed as a module which can be 

exchanged. The resulting dataset consisting of ὔ Monte Carlo simulations has to cover all 
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potentially critical system states. Furthermore, a significant number of non-critical system 

states are included in the Monte Carlo simulations. This aspect is discussed in the following 

section. 

5.2 Forecasting and identification of critical system states  

This section is concerned with the identification of a set of critical system states Ὓ , 

which is a subset of all possible system states Ὓ ṒὛ.  In order to differentiate between 

the hours of the forecast horizon in operational planning, different critical system state sets 

have to be introduced for each look-ahead time Ὧ. Because decisions have to be made in ὸ, 

this becomes a forecasting problem that aims at predicting Ὓ
ȿ
ṒὛ ȿ for each Ὧ. 

Subsequently, three approaches for forecasting Ὓ
ȿ

 are presented.  

5.2.1 Full computation 

The full computation approach aims at computing all system states Ὓ ȿ Ὧᶅ and identifying 

securely the critical ones by running a N-1 contingency analysis. Efficient algorithms for 

solving the load flow problem have to be applied due to the size of the problem. Furthermore, 

a high level of parallelization is necessary to forecast all critical systems states in a satisfying 

amount of time. However, the full computation approach represents the only approach that 

is capable of forecasting all critical system states correctly under the assumption that the 

simulated distribution of system state parameters covers all likely system state parameters 

in reality. 

5.2.2 Problems of dimensionality and computation time 

In order to perform a contingency analysis, as many load-flow calculations as number of 

contingencies ὲ have to be performed. This is naturally necessary for all simulations ὔ. 

Hence, this corresponds to ὲẗὔ load flow calculations. Because operational planning is 

carried out for the next ὑ hours, ὲẗὔẗὑ load flow calculations are necessary for the whole 

operational planning process. If the number of contingencies is 500, 1000 Monte Carlos 

simulations are run and a load flow calculation takes about 1 second, the computation of all 

system states takes approximaltey 140 days without any parallel computing. Thus, the 

computation of all system states is under normal circumstances too time-consuming for 

operational planning unless the process is parallized. The following sections present 

potential approaches to solve this issue and reduce the computational time accordingly. 

5.2.3 Identification of non-critical system states 

As can be seen in historical data sets, certain forecast conditions, such as high or low 

expected wind in-feeds, lead to certain distributions of system states and, hence, to certain 
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critical system states. Thus, the relationship between critical system states Ὓ
ȿ

 and the 

respective set of forecast conditions ὅ ȿṒὅ can be replicated by a function: 

Ὓ
ȿ

Ὢὅ ȿȟὛ ȟὅ ȟ 

which uses historical critical system states Ὓ   and forecast conditions ὅ  in 

order to learn the functional relationship. The relationship can be used to identify the set of 

uncritical system states Ὓ ṒὛ, which consists of system states that do not exceede 

any operational limit.  

 

Figure 5-2: Set of all system states S and the subsets Snon-critical, Sreduced and Scritical 

The idea is to reduce the number of the system states that have to be evaluated in term of 

criticality, which is illusted in Figure 5-2. Thereby, a reduced subset Ὓ Ṓ Ὓ͵Ὓ  

is formed. Ὓ  can be understood as a buffer zone in order to make sure that none of 

the critical system states are missed. Besides, Ὓ  helps to understand how the system 

reacts when it is approaching a critical system state. The reduced subset can be either fully 

computed (cf. section 5.2.1) or serve as the input for a selective approach, which is outlined 

in section 5.2.4. 

The most promising approach is the application of a pattern recognition methodology. 

However, a broad data base is required to minimize the probability to assign a critical system 

state to the group of uncritical ones by mistake. Furthermore, it has to be ensured that those 

system states which have never occurred in the past are assigned to the correct set of 

system states.  

5.2.4 Selective approach 

Reducing the number of system states to be evaluated is the first step to reduce the 

computation time. However, this first step does not provide the critical system states relevant 

for the operational planning process. The problem with any approach other than the 

analytical one described as ñfull computationò in section 5.2.1 is to ensure that all critical 

system states are identified securely, i.e. not to assign a critical system state to the group of 

the uncritical ones. However, in practice it will not be possible to limit the reduced set of 

Ὓ 

Ὓ  

Ὓ  

Ὓ  
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system states Ὓ  to the number of the critical ones but to further reduce this set to a 

number of ñsuspiciousò system states by using additional information and to use 

mathematical operations, which are efficient in terms of the required computational time. 

The concept is outlined in Figure 5-3. 

 

Figure 5-3: Forecasting critical system states  
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 Conclusions 

Modeling of uncertainties for power systems requires the consideration of many factors. 

There are furthermore many interdependences between these factors (e.g. between RES 

infeed and power exchange), which make the modeling a truly complex undertaking. At the 

same time, the information derived using the complex models has to be reduced to a level 

that is useful to the people doing the actual power system operation.  

The approach developed here allows to cope in detail and without restrictive assumptions 

for the various uncertain factors and their combined distribution characteristics have been 

approximated as good as possible. This input is used then to determine load flows and 

system states in a next step. This requires a dedicated thinking about what are the relevant 

system states and an adequate handling of the numerous input data. Finally this is then 

used for the identification of critical system states. Here it is clearly shown that no unique 

approach is to be recommended but several pathways have been developed with each 

having its specific drawbacks and merits. They clearly complement each other and 

depending on the system under study and the conditions of operation one or another may 

be chosen.  

By providing hence a general approach based on parameter estimations, Monte Carlo 

simulations and identification techniques, work package 2 provides core input for future 

secure operation of power systems with high penetration of renewables. At the same time 

the framework developed may easily be adapted to changing circumstances or better data 

quality and availability in the future.  
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Appendix A 

PQ-analysis for forecasting reactive vertical load 

An analysis of the PQ charactericitcs is necessary in order to evaluate the performance of 

the reactive load forecasting model. Therefore, the PQ characteristics depend heavily on 

the situation in the subordinate voltage levels. This is illustrated in Figure A-1, whereas ὖ  

(RAL) represents the residual (or underlying) active load and ὗ  (RRL) the redsidual (or 

underlying) reactive load. 

 

 

Figure A-1: Simplified representation of underlying voltage levels 

Figure A-2 Fehler! Verweisquelle konnte nicht gefunden werden.shows a PQ-diagram, 

a scatterplot of the values of RAL (x-axis) and RRL (y-axis) measured in one year in 15 

minute time-steps at one node of the transmission system.  
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Figure A-2: PQ-Diagram of a transmission system node with a small amount of installed RES (node 1) 

The sign convention applied for the division of the quadrants of Figure A-2 is depicted in 

Figure A-3.  

 

Figure A-3: Sign convention for quadrants 

Positive (negative) values of the RRL in quadrants I and II (II and IV) represent inductive 

(capacitive) loads from the perspective of the transmission system. The RAL only shows 

positive values, which means that the subordinate voltage levels consists of active power 

consumers (quadrants I and IV) with a negligible amount of installed RES units. 

The analysis of the RRL time series shows similarities to the analysis of the RAL, such as 

pronounced daily cycles with significant differences between working days, Saturdays and 

Sundays/public holidays, characteristics which arise from the cyclical patterns of human 

behavior. Figure A-4 shows such patterns for a time period of one week, starting with 

Saturday. The third day has a similar pattern to day one and two because this Monday was 

a local holiday. 

I

IVIII

II
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Figure A-4: Exemplary Time Series of RAL (blue) and RRL (red) 

An exemplary node 2, shown in Figure A-5, is located in the north of Germany in a region 

were a substantial amount of wind energy units are connected to the distribution system. 

The negative values of the RAL correspond to situations in which the load flow at the 

interconnection between transmission system and the distribution system changes direction, 

i.e. a surplus of active power from the subordinate voltage level is injected into the 

transmission system. Methods such as time series analysis cannot be applied for 

transmission nodes with a significant installed capacity of RES in the subordinate voltage 

levels as shown in Figure A-5, since the infeed from wind and solar energy units depends 

on the weather situation and does not follow a daily cycle. For such nodes a model has to 

consider the forecasted infeed from wind and solar energy units in order to predict the RRL.  

 

Figure A-5: PQ-Diagram of a transmission system node with a significant amount of installed DG (node 2) 


